Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(23): 16786-16805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938473

RESUMO

Warming of the oceans and shifts in the timing of annual key events are likely to cause behavioral changes in species showing a high degree of site fidelity. While this is well studied in terrestrial systems, there are fewer examples from the marine environment. Sandeel (Ammodytes marinus) is a small eel-shaped teleost fish with strong behavioral attachment to sandy habitats in which they are buried from late summer through winter. When spring arrives, the sandeel emerge to feed during the day for several of months before returning to the sand for overwintering refuge.Using fisheries data from the North Sea, we investigated whether catch rates reflect the timing of emergence and if seasonal patterns are related to temperature and primary production.Catch per unit effort (CPUE) was used to describe sandeel emergence. We developed indicators of the relative timing of the emergence from the winter sand refuge and the subsequent growth period. Different modeling approaches were used to investigate the relationship with bottom temperature and primary production.Variation in emergence behavior was correlated with variation in sea bottom temperature. Warmer years were characterized by earlier emergence. Significant warming over the last three decades was evident in all sandeel habitats in the North Sea throughout most of their adult life history, though no net shift in the phenology of emergence was detected. Minimum temperature during spring was a better predictor of emergence behavior than, for example, degree days.This study emphasizes how temperature-induced changes in behavior may have implications for predators and fisheries of sandeel. The method can be applied to other species for which the timing of exploitation (i.e., fisheries) and species life history are well matched.

2.
Evol Appl ; 13(2): 376-387, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993083

RESUMO

Sandeels are an ecologically important group of fishes; they are a key part of the food chain serving as food for marine mammals, seabirds and fish. Sandeels are further targeted by a large industrial fishery, which has led to concern about ecosystem effects. In the North Sea, the lesser sandeel Ammodytes marinus is by far the most prevalent species of sandeel in the fishery. Management of sandeel in the North Sea plus the Kattegat is currently divided into seven geographical areas, based on subtle differences in demography, population dynamics and results from simulations of larval dispersal. However, little is known about the underlying genetic population structure. In this study, we used 2,522 SNPs derived from restriction site-associated DNA sequencing (RADseq) typed in 429 fish representing four main sandeel management areas. Our main results showed (a) a lack of a clear spatially defined genetic structure across the majority of genetic markers and (b) the existence of a group of at least 13 SNPs under strong linkage disequilibrium which together separate North Sea sandeel into three haplotype clusters, suggestive of one or more structural variants in the genome. Analyses of the spatial distribution of these putative structural variants suggest at least partial reproductive isolation of sandeel in the western management area along the Scottish coast, supporting a separate management. Our results highlight the importance of the application of a large number of markers to be able to detect weak patterns of differentiation. This study contributes to increasing the genetic knowledge of this important exploited species, and results can be used to improve our understanding of population dynamics and stock structure.

3.
Evol Appl ; 12(4): 830-844, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976313

RESUMO

Genetic data have great potential for improving fisheries management by identifying the fundamental management units-that is, the biological populations-and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.

4.
PLoS One ; 6(11): e27055, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110601

RESUMO

Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves.


Assuntos
Calcificação Fisiológica , Metabolismo Energético , Gadiformes/metabolismo , Membrana dos Otólitos/metabolismo , Algoritmos , Ração Animal , Animais , Calibragem , Gadiformes/fisiologia , Imagem Molecular , Estações do Ano , Temperatura
5.
Proc Biol Sci ; 273(1593): 1459-64, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16777738

RESUMO

The existence of biologically differentiated populations has been credited with a major role in conferring sustainability and in buffering overall productivity of anadromous fish population complexes where evidence for spatial structure is uncontroversial. Here, we describe evidence of correlated genetic and life history (spawning season linked to spawning location) differentiation in an abundant and highly migratory pelagic fish, Atlantic herring, Clupea harengus, in the North Sea (NS) and adjacent areas. The existence of genetically and phenotypically diverse stocks in this region despite intense seasonal mixing strongly implicates natal homing in this species. Based on information from genetic markers and otolith morphology, we estimate the proportional contribution by NS, Skagerrak (SKG) and Kattegat and western Baltic (WBS) fish to mixed aggregations targeted by the NS fishery. We use these estimates to identify spatial and temporal differences in life history (migratory behaviour) and habitat use among genetically differentiated migratory populations that mix seasonally. Our study suggests the existence of more complex patterns of intraspecific diversity than was previously recognized. Sustainability may be compromised if such complex patterns are reduced through generalized management (e.g. area closures) that overlooks population differences in spatial use throughout the life cycle.


Assuntos
Migração Animal , Peixes/genética , Variação Genética , Animais , Feminino , Pesqueiros , Peixes/fisiologia , Geografia , Comportamento de Retorno ao Território Vital , Masculino , Mar do Norte , Estações do Ano , Comportamento Sexual Animal
6.
Evolution ; 59(12): 2656-68, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16526512

RESUMO

The marine environment is characterized by few physical barriers, and pelagic fishes commonly show high migratory potential and low, albeit in some cases statistically significant, levels of genetic divergence in neutral genetic marker analyses. However, it is not clear whether low levels of differentiation reflect spatially separated populations experiencing gene flow or shallow population histories coupled with limited random genetic drift in large, demographically isolated populations undergoing independent evolutionary processes. Using information for nine microsatellite loci in a total of 1951 fish, we analyzed genetic differentiation among Atlantic herring from eleven spawning locations distributed along a longitudinal gradient from the North Sea to the Western Baltic. Overall genetic differentiation was low (theta = 0.008) but statistically significant. The area is characterized by a dramatic shift in hydrography from the highly saline and temperature stable North Sea to the brackish Baltic Sea, where temperatures show high annual variation. We used two different methods, a novel computational geometric approach and partial Mantel correlation analysis coupled with detailed environmental information from spawning locations to show that patterns of reproductive isolation covaried with salinity differences among spawning locations, independent of their geographical distance. We show that reproductive isolation can be maintained in marine fish populations exhibiting substantial mixing during larval and adult life stages. Analyses incorporating genetic, spatial, and environmental parameters indicated that isolating mechanisms are associated with the specific salinity conditions on spawning locations.


Assuntos
Meio Ambiente , Peixes/genética , Distribuição por Idade , Animais , Oceano Atlântico , Evolução Biológica , Variação Genética , Genética Populacional , Repetições de Microssatélites , Cloreto de Sódio , Software , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...